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A New Technique to Escape Local Minimum in Artificial Potential 
Field Based Path Planning 
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The artificial potential field (APF) methods provide simple and efficient motion planners for 

practical purposes. However, these methods have a local minimum problem, which can trap an 

object before reaching its goal. The local minimum problem is sometimes inevitable when an 

object moves in unknown environments, because the object cannot predict local minima before 

it detects obstacles forming the local minima. The avoidance of local minima has been an active 

research topic in the potential field based path planing. In this study, we propose a new concept 

using a virtual obstacle to escape local minima that occur in local path planning. A virtual 

obstacle is located around local minima to repel an object from local minima. We also propose 

the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. 

This modeling method is adaptable for real-time path planning because it is reliable and 

provides lower complexity. 
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1. Introduct ion  

The problem of moving an object, such as a 

mobile robot, in space while avoiding collisions 

with obstacles is known as obstacle avoidance or 

path planning. The goal of collision-tYee path 

planning is to iliad a continuous path for an 

object from the initial position to the goal posi- 

tion (Volpe and Khosla, 1990; McFetridge and 

Yousef-lbrahim, 1998). Many algorithms for path 

planning have been studied and developed over 

the past twenty years (Ira et al.. 2002: Sacks, 

2002; Kang and Lira, 1999: Han et al., 2001). 

The previous related works can be classified into 
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complete and heuristic (incomplete) techniques 

(Janabi-Sharifi and Vinke, 1993). Complete al- 

gorithms are based on exact configuration repre- 

sentations with complete inlbrmation about the 

free space and goal. They have been developed for 

parts bounded by algebraic curve segments. The 

basic problem with the complete algorithms is 

that they are computationally intractable (Rimon 

and Koditschek, 1992). On the other hand, heuri- 

stic techniques provide lower complexity. Among 

heuristic approaches, the APF method provides 

simple and effective motion planners for practical 

purposes (Lee and Park, 1991). The applications 

of APF ['or obstacle avoidance was first deve- 

loped by Khatib (Khatib, 1986). This approach 

uses two types of potentials, which are a repulsive 

potential field to lbrce an object away from 

obstacles or forbidden regions and an attractive 

potential field to drive the object to its center. The 

object moves under the action of a force that is 

equal to the negative gradient of that potential, 
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and it is driven from the position with the higher 

potential to that with the lower. 

Path planning using the APF is decomposed 

into two leve ls - - loca l  and global (Singh et al., 

2000). The job of local planning is to react to 

sensory data as quickly as possible for avoiding 

hazards of various kinds. Global planning re- 

quires a complete specification of the environ- 

ment to determine how to move the object to 

reach the goal. Global methods have several 

disadvantages. For example, the algorithms for 

these methods cannot be applied to the path 

planning process in unknown environments be- 

cause it requires complete information on the 

environment before path planning. Even though 

complete information may be known about the 

environment, the computational complexity of 

this approach limits its real-time applications to 

only very simple cases, because their computation 

time increases exponentially with the degrees 

of freedom of objects (Kim and Khosla, 1992). 

Therefore, global planning is suited only for off_ 

line path planning in known environments. A 

viable alternative to global planning methods is 

provided by local ones. The local potential field 

methods capture local information in real-time to 

keep the object away from the local obstacles in 

the cartesian space of the object. Consequently. 

the local methods may avoid complexity of the 

global ones. 

However, a major problem in local path plan- 

ning using an APF approach is the local mini- 

mum, which can trap an object before reaching 

its goal. The local minimum problem is some- 

times inevitable in local path planning, because 

the object can detect only local information on 

obstacles. In other words, the object cannot pre- 

dict local minima before experiencing the envir- 

onment. Avoidance of a local minimum has been 

an active research topic in the potential field 

based path planning (Volpe and Khosla, 1990: 

McFetridge and Yousef-lbrahim, 1998; Janabi 

-Sharifi and Vinke, 1993: Lee and Park, 1991: 

Kim and Khosla, 1992: Rimom and Koditschek, 

1992 ; Cho and Kwon, 1996) However, the previ- 

ous solutions were limited to simple formations of 

obstacles or available tbr path planning in known 

environments. 

In this research, a virtual obstacle concept is 

proposed as an idea to escape a local minimum. 

The virtual obstacle is located around the local 

minimum point to repel the object from this 

point. This technique is useful for local path 

planning in unknown environments. The discrete 

modeling method is also proposed for the simple 

modeling of objects with an arbitrary shape. This 

modeling method is reliable and provides less 

complexity for real-time path planning. 

This paper is organized as follows: In Section 

2, the artificial potential approach is introduced 

and the local minimum problem is discussed. In 

Section 3, the discrete modeling method is pro- 

posed. In Section 4, the virtual obstacle concept 

is proposed to overcome the local minimum pro- 

blem. In Section 5, the proposed approach is 

evaluated through simulations. This paper con- 

cludes in Section 6. 

2. Potent ia l  Theory and Local  

Mi n i mum Problem 

2.1 Artificial potential field approach 
APF approaches are based on a gradient des- 

cent search method, which is directed towards 

minimizing the potential function. Obstacles that 

have to be avoided are surrounded by repulsive 

potential fields, and the goal point is surrounded 

by an attractive potential field. The attractive 

potential is generally a bowl-shaped energy well 

which drives an object to its center it the envir- 

onment is unobstructed. However, in an obstruct- 

ed environment, repulsive potential energy hills 

that repel the objects are added to an attractive 

potential field at obstacle locations, as shown in 

Fig. 1. The object experiences a force that is equal 

to the negative gradient of the potential. This 

force drives the object downhill until the object 

reaches the position with minimum energy. 

In this section, we review the attributes of the 

attractive potential function and the repulsive 

potential function adopted in this study. The 

attractive potential function used in this study is 

the conical well proposed by Andrews (Andrews 

and Hogan, 1983). This function is quadratic 
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Fig. 1 Repulsive potential added to an attractive 
potential and distributed force 

within a given range and the value of the func- 

tion increases linearly in the outer range. There- 

fore, it is adaptable for path planning in wide 

environments (Volpe and Khosla, 1990). The 

conical well Uatt is described by 

Ua. (x) 
f k~ I x - x ~  12 

k~(2& ] x - x ~  ]-d~)  
if I X--Xd I~d~ (1) 
i f [ x - - x ~ l > &  

where x represents the position vector of the 

object, xu represents the position vector of the 

goal, da is the radius of the quadratic range, and 

ka is the proportional gain of the function. The 

attractive force Fatt may be obtained by the neg- 

ative gradient of this attractive potential: 

F~ (x) = -VU~.  

[ -2k~(x-x~)  if [ x - x d  I<d~ (2) 

=" X--Xa if [ X--Xd I>da. 
-2d~k~ I x - x d  I 

The conical well provides a force with constant 

magnitude for distances larger than da. 

The second category of potentials, the repulsive 

potential, is necessary to repel the object away 

from obstacles that obstruct the object's path of 

motion in the global attractive potential fie[d. 

These potential functions have a limited range of 

influence. This prevents an obstacle from affecting 

the motion of an object when it is far away from 

the obstacle (Volpe and Khosla, 1990). The fol- 

lowing repulsive potential function is the FIRAS 

function proposed by Khatib. This function uses 

the shortest distance to an obstacle as 

Ur ,(Xl {½ if,o ,Oo = \ p Po / (3) 
0 if P>po 

where P0 represents a potential field's distance 

limit of influence and p is the shortest distance 

to an obstacle. The selection of the distance P0 

depends on the maximum speed of the object and 

the control period (Khatib, 1986). The repulsive 

force is driven as 

Fret, (X) = --V Urep 
(1  1 ~ 1 0 p  

= kr \ p - - ~ o / ~ O x  if P<=Po (4) 

0 if P>Po 

where cZp/Sx can be represented as 

ap ( Op Oo ~T X-Xo (5) 

where Xo is the position vector of the closest 

obstacle in the xy  coordinate system (Khatib, 

1986). 

The global potential can be obtained by adding 

together the sum of the attractive potential and 

repulsive potential. The distributed force P(x )  is 

obtained by the negative gradient of a global 

potential. The principle of superposition can be 

applied to get F (x )  as 

F (x )  = - V  U (x) 

= - -V  Uatt (x) - V  Urea (x) (6) 

=Fa t t  (x) + F,-~/, (x). 

2.2 Local minimum problem in unknown 

environments 

In unknown environments, the object initially 

does not have any information about the envir- 

onment, and it has a limited sensing range to 

detect obstacles. In this study, it is assumed that 

the object can detect obstacles up to 1.5 m from 

itself. The environment in Fig. 2(a) does not 

contain a local minimum, so objects may success- 

fully reach the goal using the APF approach. In 

the environment of Fig. 2(b), however, objects 

may be trapped in a local minimum. In this case, 
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the global potential has the formation in Fig. 3. 

The object cannot move anywhere in the local 

minimum, because the local minimum is a point 

where the potential gradient becomes zero. The 

local minimum problem is sometimes inevitable 

in local path planning. In Fig. 2, objects can 

detect only the obstacle located in 1.5 m from 

itself. Therefore, the object cannot judge whether 

the deep aisle-shaped obstacle has a dead-end 

(Fig. 2(b)) or not (Fig. 2(a)) before going into 

the aisle. 

3. Discrete Modeling Method 

2.1 Continuous modeling of objects and its 
problem 

The discrete modeling method simplifies the 

modeling of arbitrary objects. In this section, a 

continuous modeling method and its problems are 

discussed before proposing the discrete modeling 

method. 

Consider the dynamics of the object shown in 

Fig. 4, where C is the center of mass. The object 

is subject to distributed force F ( s ) .  To get the 

velocity of the object, we should obtain the total 

force Fc and the total moment Me, which act at 
C. They are obtained by the line integral of force 

and moment along R as lbllows : 

F c = ~ F ( s )  ds (7) 

Mc = f R  (p(s) xFCs) )  ds (8) 

where the integration around R is the boundary 

curve of the object and is the arc length of R. 

To solve Eqs. (7) and (8), the boundary curve 

R should be defined as a continuous function in 

a global coordinate system. However, it is very 

difficult to describe arbitrary-shaped objects as a 

continuos function. Even though the function is 

obtained, these models of objects are not adap- 

table for real-time path planning because they are 

computationally intensive. 

3.2 Discrete modeling of an object 
To solve the problem of the continuous 1330- 

cleling method, we propose a discrete modeling 

method that lets us easily get a total force and a 

total torque acted on the center of mass in arbi- 

trary shaped objects. Fig. 5 shows the example of 

an arbitrary shaped object. The object has a local 

coordinate system fixed on it. The point C is the 

center of mass and the origin of the local coordi- 

nate system. In the discrete modeling method, the 

object is divided into finite segments and each 

segment has the object skeleton point pi, which 

is given by the designer. To analyze the dynamics 

of the object, we should get the position vector 
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Fig. 5 Discrete modeling and forces acting on object 
skeleton points 

of the object skeleton points relative to O, which 

is the origin of the global coordinate system. The 

position vector of the object skeleton points can 

be obtained by 

Pi/o=Pl/c + Xclo (9) 

where Xc/o is the position vector of C relative 

to O and the set ofpi /c  should be initially defined 
by the user. 

In Fig 5, each object skeleton point is under the 

action of the lbrce generated in the potential field. 

These forces can be represented as the total force 

Fc  and the total moment Mc acting on the center 

of mass. F c  and Mc are obtained by 

// 

Fc  = Z F (pi/o) ( i o) 
i = 1  

n 

Mc = 52, (p~/c × F (p,/o)). ( 1 1) 
i=1 

Consequently, we can get the linear acceleration 

and the angular acceleration of the object by 

Newton's 2nd Law as follows: 

Vc: -  Fc  (i2) n 

~ m ~  
i=1  

Wc-- . Mc (13) 
rnl (pilc " pilc ) 

i =1  

where rn~ is the mass of each segment. 

The linear velocity of the object in the discrete 

control system with a control period T can be 

derived as 

v ~ i t +  T) =Vc (t) + A v c ( t )  
(14) 

= v c ( t )  + T v c ( t )  

[ v~ if [ v~ [~Vmax 115) 

V~ if l v ~ l >  U . . . .  ' V c =  vm.x I v ~ l  

Because the velocity of the object has an upper 

limit in the real world, the maximum magnitude 

of the linear velocity is set to Vmax when [ v~ i is 

greater than Vmax. In the same way, the angular 

velocity with the maximum magnitude of Wmax is 

obtained by 

w'c (t + T)  = w c ( t )  + A w c ( t )  
(16) 

= w c ( t )  + TWc( t )  

{ w~- i f  ] W c  [~/A)max 

Wc = w'c if'] w'c [>w . . . .  (17) 
Wm"x I W~ I 

In the path planning of real objects, these veloci- 

ties may be used as control inputs. In simulations, 

however, the position of the object should be 

derived. The position vector Xc/o and the angle 

Oc/o in the global coordinate system is expressed 

a s  

Xc/o(t + T)  =Xc/o(t)  +Axc;o( t )  
(18) 

=xc/o(t)  + T v c ( t )  

Oc;o(t + T)  =Oclo(t) + AOclo(t) 
(19) 

=Oc;o(t) + T w c ( t )  . k  

where T is the sampling period used in simula- 

tions. 

To get arbitrary points on the object in the 

global coordinate system, it requires the trans- 

formation matrix between the global coordinate 

system and the local coordinate system. The point 

{ Xi/c Yi/c }r in the local coordinate system can 

be transformed into the point { Xi/o yi/o }r in the 

global coordinate system by following this trans- 

lbrmation equation : 

o]l ,,c } 
yi/oJ Lsin0c/o cos Oc/o yc/o [Yi/c (20) 

1 

where { xc/o yc/o }T is the position of C in the 

global coordinate system. 

In this study, we defined two types of objects as 
shown in Fig. 6 and Fig. 7, The object skeleton 
points of these object are defined in Table 1. 

These objects will be used for simulations in 

Section 5. 
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]'able 1 Object skeleton points for two objects 

Bar-shaped object L-shaped object 

p . c  = - 0 - 8 [  
Pz/c = --0.4~ 
p3,c = 0  

P4, 'C  =0.4[ 
psJc =0.81 

pl,,C = --0.5143~ + 1.2857] 
pz/C: --0.51431 +0.6857] 
P3/c = --0.5143~ +0.0857] 
p4/c = --0.5143] +0.5143] 
Ps/c = 0.0857~ +0.5143] 
p6/c =0.6857] +0.5143] 
Pvc = 1.2857] + 0.5143] 
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Discrete modeling of an L-shaped object 

4.  V i r t u a l  O b s t a c l e  C o n c e p t  a n d  E x t r a  

P o t e n t i a l  F u n c t i o n  

A virtual obstacle is a new concept to escape a 

local min imum when an object is trapped in the 

local minimum. In the convent ional  A P F  method, 

the local min imum is formed when an attractive 

force is equal  to a repulsive force as shown in 

Fig. 8(a) .  A virtual  obstacle has the role of 

repelling the object from a local minimum.  Fig. 8 

(b) illustrates the mechanism of the proposed 

A P F  method with a virtual obstacle. The virtual 

obstacle is generated when the object is trapped in 

a local min imum,  and then it make an extra force 

that repel the object from a local min imum point. 

To judge whether the object is trapped in the 

l* Attractive force 

. . . .  ~ Rel:~llslve force 

. . . . . . . .  lb E;(tt'a f o r ~  

Fig. 8 

G o a l  

Total f o r c e  = 0 

Obstacle 

(a) 

Total force : Extra force 

[-] .... 
Virtual . . _ . L _ _ . I ~  ~ , , . ~  

Obs,aele f 
I -obs c,o -] 

G o a l  

(b> 

(a) Conventional artif icial forces versus 

(b) Proposed artif icial forces with virtual 

obstacle 

local min imum or not, the following criterion is 

defined : 

L o c a  l -  m i n i m  u m  - c r i t e r i o n  

When t &  Ta, ifl xc(t) - X c ( t -  Ta)I~--Sa then 

the object is trapped in a local minimum,  where 

xc represents the position vector of the object, 

Ta is the time interval, and Sa is set to the 

min imum distance that the object moves for fa  in 

the non- loca l  min imum condit ion.  Sa should be 

set to a very small value because the distance 

between Xc( t )  and x c ( t - f a )  has a very small 

value when the object is trapped in a local mini-  

m u m .  

When an object is trapped in a local minimum,  

a virtual obstacle is located at the t rapping point 

to repel the object from the local min imum point. 

The position vector of the t rapping point  is de- 

fined as xrp, which satisfies the following iden- 

tical equat ion : 

Fa~t (xrp) • ( - Frep (x re) ) 
:MAX{ Fa.  (pl)" ( -Fre~ (pl)), 

Fatt (p2)" ( - F r e p  (p2)), (21) 

F ~ .  (Pn)" ( - F r e p  (pn)) } 

where Pi  is the object skeleton points discussed in 

Section 3.2. The trapping point is selected among 

the object skeleton points, and the inner  product 
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of  the attractive force and the negative repulsive 

force has the maximum value at this point  as 

shown in Fig. 9. Therefore,  the t rapping point  

may has a major  influence on t rapping the object, 

and the object should then be far away from this 

point. 

The virtual  obstacle has the extra potential  to 

repel the object from the t rapping point. The  extra 

potential  Uext (Fig. 10) is defined as 

U,., (x) 

_ l -  2k e I X--X P 12 if ' x - x r p  I < d e  (22) 

where de is the range of  the quadrat ic  part in the 

extra potential.  This quadrat ic  part is required for 

differentiation at the t rapping point. The extra 

potent ial  has a maximum value at the t rapping 

point, but it decreases with the distance from the 

t rapping point. Theretbre,  this potential  can repel 

an object from the virtual  obstacle. The  extra 

force Fext is obtained by the negative gradient of  

an extra potential  as follows : 

Goal O b j e c t ~ - . . ~ "  

Fig. 9 Searching for a trapping point 

Fex,(x)=-VU~x,  

l ~, X--XTp 

( I 

if [ X--XTP I ~ &  

if I x - x r P  [>&. 
(23) 

If de is set to a very small value, the extra force 

can be redefined as 

F ext (X) = -- V Gem 

0 if I x - - x r p  I=O 

X--XTp if  I X - - X T p  1 > 0 .  

= ke Ix-x PI 

(24) 

Ul(X) having a global  potential  without  an extra 

potential  and Uz(x) containing an extra potential  

are defined as follows : 

U,(x) = Uo. (x) + Ure~ (X) (25) 

U2(x)=Ul(x) +U~, (x )  
: U a t t ( X ) ~ - U r e p ( X ) + U e x t ( X ) .  

(26) 

The distributed forces are expressed as 

F z ( x ) = F a u ( x ) + F r e p ( x )  (27) 

F2 (x) = F ,  (x) +Fex, (x) 
= F ~ ,  (x) +F~p(x)  +F~xt (x). 

(28) 

Figure  11 shows the extra potential  added to the 

original  global  potential.  In this format ion of  

potential ,  the object can escape from a local 

min imum because the t rapping point  has a higher 

potential  than its neighbors. The extra potential  is 

applied while an object is in a local min imum 

area. The local min imum area means the region 

0- 

I~ .'tO. 

-lfi, 

T~a pping point 

I? 12 

0 0 

Fig. 10 Extra potential by a virtual obstacle 
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Fig. 11 Global potential with a virtual obstacle 
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that the object may return to when the virtual 

obstacle is cleared. 

When the object is in a local minimum area, it 

may move away from the local minimum by the 

virtual obstacle, and also it may move away from 

its goal because the direction of the goal is similar 

to that of the trapping point. The object may 

move to its goal only after it escapes the local 

minimum area. Therefore, we define the following 

criterion to judge whether the object escapes the 

local minimum area or not:  

Step 3. 

L o c a l  - rain i m  u r n -  cr i t e r ion .  

If the object is trapped by a local minimum, 

then L o c a l  - -  M i n i m u m  - -  F l a g  = 1. 

Search for the trapping point xr~, to satisfy 

Eq. (21). 

Step 4. 
E s c a p e -  l o c a l  - m i n i m u m  - a r e a -  cr i t e r ion .  

If the object escapes local minimum area, 

then L o c a l  - -  M i n i m u m  - -  F l a g  =0.  

E s c a p e -  l o c a  1 - m i n i m u m  - a r e a -  c r i t e r i o n  

When t-tTe~_ Tb, if I xc(t)  --xd I--I x c ( t -  
T b ) - - x a l  then it is assumed that the object 

escaped the local minimum, where trp is the time 

when the object is located at a trapping point, Tb 

is the time interval from the previous to current 

time to get the change of distance to goal, and this 

conditional expression means that the object 

moves to the goal direction. 

The whole path planning algorithm is as 

follows: 

P a t h  - p l a n n i n g - a l g o r i t h m  

Step 1. 
t = 0 .  

Xc(0) =XsrA~r. 

Vci0) =0.  

W c  (0) =0.  

L o c a l  - -  M i n i m u m  - -  F l a g  =0.  

Step 2. 

Sensing obstacles. 

t = t + T .  

Calculate p i /o  by Eq. (9). 

I f L o c a l  - -  M i n i m  u m  - -  F l a g  --- 0, 

F (pi/o) =Fa  (x). 
Or else if L o c a l  - -  M i n i m u m  - -  F l a g  = 1, 

F (pi/o) =F2 (x ) .  
Calculate F(pl/o) by Eq. (27) or (28). 

Calculate Fc ( t )  and Mc( t )  by Eqs. (10) and 

(11). 
Calculate ~ r c ( t ) ,  W c ( t )  by Eqs. (12) and (13). 

Calculate Vc(l) ,  W c ( l )  by Eqs. (14) and (17). 

Calculate Xc/o(/), O c / o ( t )  by Eqs. (18) and (19). 

Step 5. 
If I x c - x d  1_~ T o l e r a n c e  

then path planning is completed, 

Or else return to Step 2. 

5. Simulations 

We performed various simulations to evaluate 

the discrete modeling method and the virtual 

obstacle approach. It is assumed that an object 

initially does not have any information on the 

environment, and it can detect obstacles up to 

1.5 m from itself. Table 2 shows the simulation 

conditions. The values of parameters are ade- 

quately set by a trial and error method. Two types 

of objects are used in simulations: a bar-shaped 

object and an L-shaped object shown in Section 

3.2. The simulations of Figs. 12(a) and 12(b) do 

not have any local minimum, so the object can 

successfully reach the goal only by the APF 

approach. In Fig. 12(c), the obstacle has the 

shape of a closed aisle. Therefore, the object is 

trapped in a local minimum when the APF ap- 

proach is applied. In the same environment, Fig. 

13 shows that the object can escape the local 

Table 2 Simulation conditions 

Control period : T=0.1 sec 

Maximum linear velocity : Vmax=0.3 m/sec 

Maximum angular velocity : Wmax= I0 deg/sec 

Maximum sensing range of an object = 1.5 m 

Parameter for an attactive potential : k a = l ,  d a = l  

Parameter for a repulsive potential : k r = 4 ,  p0:2  

Parameter tbr an extra potential : k e = 2  
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(a) the APF method and (b) the APF 

method with a virtual obstacle 

min imum by the virtual obstacle approach,  and 

it can successfully reach its goal. These results of  

the simulat ions show that this technique is useful 

for concave obstacles and Ibr deep ais le-shaped 

obstacles. In the s imulat ion of  Fig. 14(a), by only 

using the A P F  approach,  the L-shaped  object 

fails to reach its goal because it is trapped in a 

local minimum. However ,  the object can success- 

fully reach its goal by the virtual obstacle ap- 

proach, as shown in Fig. 14(b). Also, the object 

can move without col l is ion in the narrow aisles 

because the object is effectively modeled by the 

discrete model ing method. To evaluate the gener- 

ality of  the proposed algori thm, s imulat ions are 

done in some environments  with randomly gener- 

ated obstacles as shown in Fig. 15. The results 
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Fig. 15 Path planning in randomly generated 

environments 

of  the simulat ions show that the proposed path 

planner has good generality. 

6 .  C o n c l u s i o n s  

In this study, we proposed the vir tual  obstacle 

concept to escape local minima in local path 

planning based on the A P F  approach. The virtual 

obstacle with the extra potential  is located at the 

t rapping point when objects are trapped in a local 

minima. The extra potential  is added to the global  

potential,  and it repels the object from the local 
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minimum. The major advantage of the proposed 

path planner is that it is simple and efficient to 

solve the local minimum problem. The simulation 

results show that this technique is useful for path 

planning in various environments. The discrete 

modeling method was also proposed to get a 

simple model of  arbi trary-shaped objects. This 

method is useful for real-time path planning 

because it can simplify the complex shapes of 

objects. 
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